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Exact results are derived for the centroid and longitudinal variance of a passive 
contaminant distribution at large times after an instantaneous discharge in an 
oscillatory flow in a straight channel of constant cross-section. It is shown that the 
precise timing and cross-stream position of the discharge can have a substantial and 
persistent influence. 

1. Introduction 
For steady flows in rivers Smith (1981, 1984) and Daish (1985) have shown that 

the cross-stream location of an instantaneous contaminant release can have a 
persistent and marked effect upon the concentrations experienced far downstream ; 
while, for uniform discharges in oscillatory flows, Allen (1982, figure 8) and Smith 
(1982, figures 2a-c) have drawn attention to the importance of the timing of the 
contaminant release. The purpose of the present paper is to encompass both these 
features and to investigate the long-term influence of the precise timing and 
cross-stream position of a discharge in an oscillatory flow. 

The first few sections of this paper are directed towards the derivation of an exact 
expression for the longitudinal variance of a passive contaminant at  large times after 
discharge in an oscillatory flow in a straight channel of constant cross-section. This 
exact result is then used to illuminate several facets of the dispersion process. First, 
an analytic expression is derived for an alternative definition of the shear dispersion 
coefficient proposed by Yasuda (1982). It is confirmed that, unlike the conventional 
definition, the new definition does not suffer from the anomaly of having negative 
values (Chatwin 1975). Secondly, results derived by Smith (1983, equation (6.6)) for 
a particular flow, concerning the optimal timing of uniform discharges, are shown 
to have general validity. Thirdly, the title problem is addressed, and it is considered 
when and where to put a discharge in an oscillatory flow so that the spread of 
contaminant a t  large times is maximized (i.e. the concentration is minimized). 
Finally, the general principles are illustrated using a simple mathematical model for 
contaminant dispersion in a vertically well-mixed estuary of parabolic cross-section. 

2. Moment equations 
In axes moving with the bulk velocity U, the concentration c(x,  y, z, t )  of a passive 

contaminant in a longitudinally uniform plane parallel flow satisfies the advection- 
diffusion equation 

(2.14 

with n*x*Vc = 0 on aA. (2.1 b) 

at c + (U-U) a, c-KK,,  a; c- v. (x-vc) = q(y, z) s(t - to )  s ( ~ - ~ , ) ,  
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Here u ( y ,  z, t )  is the longitudinal velocity, K ~ ~ ( Y ,  2 ,  t )  the longitudinal diffusivity, x 
the transverse diffusivity tensor, V the transverse gradient operator, to the time of 
release, xo the release position, g(y,z) the discharge shape, aA the impermeable 
boundary and n the outward normal. Since we are assuming that the geometry and 
the flow are independent of x, we could set xo = 0 without loss of generality. 

A full solution of (2.la,b) would be formidably complicated. Aris (1956) showed 
that the 2-derivatives could be eliminated if one only sought the first few moments 

J - m  
00 

and b(p) = [ (x-xO)P(c--C)dx (p = 0,1 ,2 ,  ...), (2.2b) 
J - m  

where an overbar denotes the cross-sectional average value. Taking moments of 
(2.lu, b), we find that 

m(0) = for t > to ,  ( 2 . 3 ~ )  

(u -@)b(p - l )d t '+p(p - l )  

nt 

+ p(p  - 1 )  J " ( K ~ ~  - Rll )  b ( p - 2 )  dt' (2.3b) 
t o  

(Aris 1956, equation (12)), and that the zero-average terms bP satisfy the equations 

a, b ( p )  - vqx-v~(p)) 

( 2 . 4 ~ )  

with n - x * V b ( p )  = 0 on aA (2.4b) 

and b(O) = q-q, b(1) = b(2) = ... = 0 at t = to.  ( 2 . 4 ~ )  

Despite the more complicated looking right-hand-side forcing terms, the absence 
of 2-derivatives means that the moment equations (2.3) and (2.4) are far more 
tractable than the full equations (2.1). Yet knowledge of just the zero, first and second 
moments gives us the area, centroid and variance, and so permits a Gaussian 
approximation to the concentration distribution along each line (y, 2) .  Allen (1982) 
and Smith (1982) have established that for oscillatory flows the skewness with respect 
to x decays quite rapidly after the first half-cycle. Hence for oscillatory flows the 
Gaussian approximation is even more accurate than it is for steady flows. 

3. The centroid-displacement functions 
Following Smith (1981), we shall make the further simplification of only seeking 

asymptotic results valid at  large times after discharge. If B denotes a typical 
breadthscale across the flow, then the timescale for the decay of any free transients 
in (2.4u-c) is of order 

In particular, for the zero moment b(O) there is no forcing term in (2.4u), so the 
response is completely free : 

T, = O(B2/KZ2).  (3.1) 

b(O) - 0 for t - t o  %- T,. (3.2) 
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Depending how wide the flow is, this uniform mixing could be achieved in a small 
fraction of an oscillation or in many flow cycles. 

For p = 1, ( 2 . 4 ~ )  becomes 

atb(i)-vqx-vb(i)) = (U-U)P+(u--Q)b(O)- (u- - )b(Oj  for t > to.  (3.3) 

When the transient b(O) forcing has decayed away, the remaining (u-U) ij forcing term 
gives rise to  the asymptotic solution 

(3.4) b(') - b g  = Qg+(y,z,t), 

where the centroid-displacement function g+ satisfies the transverse diffusion 
equation 

a,g+-vqK-vg+) = u-a, ( 3 . 5 ~ )  

with n*n*Vg+ = 0 on aA (3.5b) 

(3.5c) - and g+ = 0. 

In the work of Holley, Harleman t Fischer (1970, equations (2), (8)) the function 
g+ arises in the representation of the concentration distribution 

- c = c-g+(Y, Z,t)a,a+ .... 
Their equations (21) and (22) show that the phase of g+ relative to the tidal current 
is sensitive to the ratio T/T, between the timescale T of the flow oscillations and the 
mixing time T,. In  view of the strong dependence (3.1) of T, upon the channel breadth 
B, the distinction between slow and fast oscillations amounts to a distinction between 
narrow and wide estuaries. The transition width is typically about 100 m. For narrow 
estuaries g+ tends to be in phase with the current u(t), while for wide estuaries g+ 
lags by up to quarter of a cycle behind the oscillatory current. This phase lag has 
profound implications as regards the character and efficiency of the dispersion process 
in oscillatory flows. 

For p = 1,  (2.3b) becomes 
t 

m(l) = Jto (u-E)b(OTdt'. (3.6) 

At first sight it might seem that, to determine m(') at large times after discharge, it  
would be necessary to know the full t-dependence of b(O). However, a modification 
of a mathematical device used by Smith (1984, Appendix A) enables us to get around 
this difficulty. Following the general procedure described in the Appendix to the 
present paper, we are led to introduce the auxiliary function g- : 

-a,g--vqK-vg-) = u - ~ ,  ( 3 . 7 ~ )  

with n*n-Vg- = 0 on CIA (3.7 b) 

(3.7c) 
- and g- = 0. 

The result (A 5 )  leads immediately to an explicit formula for the integral: 

From the starting value (2.4c), 

b(O) = q-ij at t = t o ,  (3.9) 
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and the asymptote (3.2), we infer that 

m(1) - g-qlt0 for t - t o  % Tdec. (3.10) 

In  axes moving with the bulk velocity U, the centroid displacement X(y, z, t )  along 
the line (y, z )  can be defined: 

(3.11) 

Thus g+ describes the cross-stream shifting of the centroid position, and g- gives the 
long-term influence of the shape and timing of the discharge. For a point release at 
(Yo, zo), 

P = ~ ~ ( Y - Y o ) ~ ( z - - Z , ) ,  (3.12) 

the asymptotic centroid displacement has the symmetric form 

x - S-(Yo, 203 to)+g+(y, 2, t ) .  (3.13) 

For later use we note that, applying the analysis of the Appendix to the equations 
(3.5) and (3.7) for g+ and g-, we can deduce that for an arbitrary reference time t ,  : 

(3.14) 

4. The variance functions 
For p = 2, (2.4a) becomes 

atb(2) -V*(x*Vb(2) )  = 2rn(')(u--u)+2{(u--u)b(')-(u--)b('T} 

+ 2 ~ ( ~ , ~ - i ? , ~ ) + 2 { ~ , ,  b ( O ) - K , , } .  (4.1) 

At large times after discharge the K~~ b(O) forcing terms vanish. Corresponding to the 
three remaining groups of forcing terms, we decompose €A2) as 

b(2) - b z )  = 2 f i  g+ + 2ijgY) + 2iK+. (4.2) 

Here the variance function gy) and the diffusivity function K+ satisfy the forced 
transverse diffusion equations 

(4.3a) 

(4.3 b) 

a, 99)- v-  (x-vgy) = (u -u) g+ - ( u - ~ )  g+, 

at K + - V * ( x * V K + )  = K ~ ~ - K ~ ~ ,  

with n*x*VgY) = n.x.VK+ = 0 on aA (4.34 

and p = K , = 0 .  (4.3d) 

For p = 2, (2.3b) becomes 

t 

+2jt: (u-U) (b( l ) -b%))dt '+2 (Kll-kK,l)b(ordt', (4.4) 
Jt . 

where we have made use of the formula (3.4) for b z ) .  
As waa the case with equation (3.6) for m(l), it  might appear that to evaluate m(2) 

it would be necessary to know the full t-dependence of both b(O) and b(')-bg).  Again 
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we adopt the procedure d6scribed in the Appendix to get around this difficulty. For 
the ( ~ ~ ~ - i ? ~ ~ ) b ( ~ )  integral in (4.4) this is straightforward. By analogy with (3.7a-c), 
we introduce the auxiliaqy function K- : 

( 4 . 5 ~ )  

with n-x*VK- = 0 on aA (4.5b) 

- -3, K- - v' (X'VK-) = Kll - K l l ,  

- 
and K- = 0. (4.54 

The corresponding vedsion of (A 5) is 
t 

(K" - Ell) b(O1dt' = GIto --It.  
Jt , 

A t  large time after discharge the transient K 3 P  contribution decays away. 

(2.4), (3.4) and (3.5) that b(')-b$) satisfies the diffusion equation 
The (u-U) (b( l ) - t jg))  integral is a more formidable obstacle. First, we infer from 

a t ( w  -b$)) -v- ( x . ~ ( b ( l )  - b g ) )  = (U-U) b(o) - (U- U) PI, ( 4 . 7 ~ )  

with n*x-V(b( ' ) -bg) )  = 0 on aA (4.7 b) 
- 

and b(') -b(l)  00 = -qg+ at t = to. (4.74 

8 = (U-Z)b(O). (4.8) 

Thus, in the notatibn of the Appendix (equation (A 2a)), we have 

Using the auxiliary function g- in the formula (A 5 ) ,  we obtain the representation 

t t 
(u-U) (b(')-b$,Sdt' = q g -  g+lt,-g-(b(') - bg)) l t  + J (u- U) b(O)g- dt'. (4.9) 

Jt , t 0  

We remark that by &finition b(')-b$) is transient and decays away at large times 
after discharge. 

As is noted in the Appendix, the representation (4.9) is not merely the replacement 
of one intractable integral by another. From (4.7a) we see that (u-%)b(O) can be 
regarded as being two spatial derivatives simpler than b(') - b$). Encouraged by this 
observation, we rewrite the remaining integral in a manner suitable for the repeated 
use of the results of the Appendix: 

t t 
(U -U) b(O'g- dt' = [(u- U) g- -  (u- T i )  g - ]  b(O) dt'. (4.10) 

I t o  Jt , 
In the notation of the Appendix, this time we have 

r = ( u - U ) g - .  (4.11) 

Hence the appropriate auxiliary function is 9'2) : 

-at - v. (%-vg?)) = (U-U) 9- - ( U - q  9- , (4 .12~)  

with 

and 

This time the formula (A 5 )  gives us a closed-form representation 
m t  

(4.12b) 

(4 .12~)  

(4.13) 
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The final asymptotic formula for mC2), based upon (4.6), (4.9) and (4.13), is 

The variance u2(y, z, t )  along the line (y, z )  is related to the second moment about 
the centroid X(y, z, t )  : 

(4.15) 

This is the central result of this paper. We note that u2 depends on the time elapsed 
since discharge, the discharge shape q, and the precise position (y,z) a t  which the 
observations are made. In the Gaussian approximation the peak concentration varies 
as u-l. So the objective of low pollution levels becomes a quest for maximizing u2. 

5. Definitions of the shear-dispersion coefficient 
Conventionally analyses of contaminant dispersion have concerned the cross- 

sectionally averaged concentration E and the corresponding moments m(P). The 
asymptotic shear-dispersion coefficient D is defined by 

") N 2(D+F,,), i.e. D = Us+. 
dt m(O) 

(In practice D is usually much larger than the longitudinal-mixing contribution K,, 
to the spreading rate.) Chatwin (1975) drew attention to the fact that D is not always 
positive. In  many situations the contaminant cloud appears to be periodically 
expanding and contracting (Holley, Harleman & Fischer 1970, figure 4). This leads 
to conceptual difficulties when D is regarded as an effective diffusion coefficient (Smith 
1982). 

Yasuda (1982) points out that much of the apparent contraction of the contaminant 
cloud is simply due to the relative movement between the faster- and slower-moving 
parts of the flow. This relative movement is factored out in the definition of the 
variance u2(y, z, t)  along each line (y, z) .  Thus he advocated that the shear-dispersion 
coefficient should be defined by 

d -  
dt 
-u2 N 2(D +KIJ 

For the particular case that he studied, Yasuda found numerically that, unlike D, 
the alternative definition D did remain positive. 

Our analytic expression (4.15) for u2(y ,  z, t ) ,  together with the equations (3.5) and 
(4.3) satisfied by g+, gp) and K+, permits us to derive the forced diffusion equation 

with 
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Taking the cross-sectional average, we obtain 

d -  
dt 
- a 2  - 2 ( ~ , , + ~ g + - x * ~ g + ) ,  i.e. D = Vg+*x.Vg+. (5 .34  

This analytic expression confirms that a is indeed non-negative. Even though there 
can be contraction at some positions across the flow (Smith 1983), on average a2 is 
increasing. 

The relationship between D and d can be ascertained by multiplying the equation 
( 3 . 5 ~ )  for g+ by g+, and integrating across the flow: 

It is when the relative centroid displacement g+ is large and rapidly changing that 
negative values of D can arise. When averaged over a flow cycle the two definitions 
of the shear dispersion coefficient are equivalent : 

( D )  = (D>, (5.5) 
where the angle brackets (. . .) indicate averages over a flow cycle. 

6. When to make a uniform discharge 
Relative to the systematic long-term growth of the variance, the excess variance 

6a2, associated with the precise discharge and observation conditions, can be defined 
as 

with 

6a2 = a2-26t[(D) + (Zl l ) ] ,  

6t = t - t o .  

( 6 . 1 ~ )  

(6.1 b )  

To emphasize the division of 6a2 into discharge and observation terms, we choose 
an arbitrary but fixed reference time t,, and using the relationship (3.14) we rewrite 
the key result (4.15) : 

t c  T 2 

6a2 - 2 1 .  ~ - ( D ) + K , l - ( K 1 1 ) ] d t ' + 2 9 -  !"Q-P) 
4 t o  

t 
- 

+ 2 K-!'tp - 2 m l t .  + 2 Lus+- ( 0 )  + Kll - ( K l l > ]  dt' 
Q t r  

+2SY'(Y, z, t)-g+(y, z, t)"+K+(y, z, t ) .  (6.2) 

If we neither know where nor how long after discharge the pollution will be 
experienced, then the best that we can do is to ensure that on average 6a2 is as large 
as possible. Averaging with respect to (y, z, t ) ,  we find from (6.2 and (5 .4)  that 

(w) = 2 It: p@I- ( 0 )  +Kll - (Kll)] dt' + 2 %It.- ey + 2 5 l t ~  
q t o  q 

where € is the first time after t ,  that the final integrand is zero. 
For a uniform discharge q = ij it follows from (6.3) that 

d 
- (W> = 2 [ ( D )  + < K 1 l ) - U g _ - K l l ] .  
dt 0 
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Hence to maximize (8a2) the discharge time to should be chosen when 

w+Kll = <D)+(Kll). (6.5) 

Since in practice (D) is much larger than (Kll), the optimal timing to for a uniform 
discharge is when ug_ rises to the value (D). 

For a particular flow with a sinwt velocity field and with x constant, Smith (1983, 
equation (6.6)) deduced that for a uniform discharge the optimal timing vaned from 
ot, = in for rapid mixing, to wt, = 0 for slow mixing. The present analysis enables 
us to reveal the generality of those deductions. For narrow flows with rapid mixing 
g- is almost in phase with the current, so 

= 2( D) sin2 wt (6.6) 

(Bowden 1965). Hence the optimal timing for a uniform discharge is wt, = in. In  the 
opposite limit, of wide flows with slow mixing, g- leads the current by in: 

ug_ = E sin2wt+2(D) sin2wt, with E % (D) (6.7) 

(Chatwin 1975). Thus the optimal timing is soon after wt, = 0. The relatively small 
value of (D) makes the variance particularly sensitive to the discharge timing in this 
wide-flow limit. 

7. When and where to make a point discharge 
For an instantaneous point discharge 

q = ijcY(y-y,)~(z-z,) at t = to (7.1) 

the averaged excess variance (W) depends upon the discharge location (yo, 2,) as 
well as upon the timing to. Instead of the ordinary differential equation (6.4), we find 
(making use of the equations (3.7), (4.12) and (4.5) satisfied by g-, g(2) and K-)  that 
(W) satisfies the time-reversed diffusion equation 

-at,(=) - V, . (x*V,(=)) = 2 ( ~ , ,  - (Kll) ) + 2[V, g-'x'V, g- - (D)], (7.2 a) 

with n - x * ~ , ( W )  = o on aA. (7.2b) 

The time-reversed character of ( 7 . 2 ~ )  means that the long-term influence of the 
discharge conditions depends only upon what happens after the discharge has taken 
place. Since shear dispersion generally dominates longitudinal mixing, the source 
term in ( 7 . 2 ~ )  is effectively 

2[d--(<a-)], with d- = V,g-*x*V,g-, (7.3a, b) 

Where d- can be thought of as a local, time-reversed counterpart to the dispersion 
coefficient D. 

When mixing is rapid (W) is predominantly a function of time: 

-at,(=) = 2[;t--(<a-)l. (7.4) 

By analogy with (6.4) and (6.5), we infer that the optimal timing is when &-(<a_) 
changes sign from negative to positive as to increases, i.e. 

- 
d- = V,g-*x'V,g- rises to (a_) = (D). (7.5) 

For a sin wt velocity field with x independent of time, this optimal discharge timing 
for narrow flows is at wt, = in (as was also the case for a uniform discharge). The 
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residual dependence of (W) upon the precise cross-stream position of the discharge 
is given by the transverse diffusion equation 

- V o * ( ~ * V ( W > )  = 2[d- -3-1. (7.6) 
Hence the best position tends to be in a region where d- is relatively large. 

discharge position across the flow : 
In  the opposite limit, of slow mixing, (W> is predominantly a function of the 

-V,-((x)*V0(W>) = 2((d- )  -(&>I. (7.7) 
Hence the best position is again in a region where d- is relatively large. If we assume 
that the shape of n remains self-similar throughout the flow oscillations, then the 
residual to dependence of (W) is given by 

Thus the optimal timing is then when 

with (yo,zo)  having the optimal values determined from (7.8). For a wide, sinot 
velocity field with x independent of time, d- varies as cos20t0. Hence the optimal 
timing arises at wt, = in, i.e. before flow reversal. This is earlier than for a uniform 
discharge. A physical explanation is that for a point discharge it takes time to diffuse 
across the flow and to take advantage of the large relative displacements g+ between 
the faster- and slower-moving parts of the flow. To compensate, the point discharge 
has to be that much earlier. 

If there is an axis of symmetry then Vog- = 0, and the local time-reversed 
dispersion coefficient d- is zero. Similarly, at the banks we have 

n*x*Vog- = 0 on aA, (7.10) 

and d- is again zero. In  the two limiting cases, of rapid and of slow mixing, we have 
just ascertained that the best position tends to be in a region where d-  is relatively 
large. Thus in an oscillatory flow the optimal location for a discharge will be away 
from the centre or the sides. This is unlike the situation for steady flows (Smith 1981, 
1984; Dabh 1985), where the low velocity in the shallow water gives extra time for 
shear dispersion (at the large asymptotic rate), which more than compensates for 
the initially weak dispersion close to the discharge. When the flow is oscillatory the 
contaminant is swept back and forth along the channel, so any time advantage is 
annulled. 

An important practical point is that real discharges are not passive. Near-field 
momentum and buoyancy effects tend to augment the transverse mixing. Thus the 
actual contaminant cloud will be wider than a passive cloud, and the effective time 
of discharge is earlier than the actual discharge time. Correspondingly the optimal 
discharge time will tend to be slightly later than calculated here for passive discharges. 

8. Shallow estuaries 
In  order to illustrate the general results derived in §§5-7, we seek a problem that 

is not unduly complicated, but is nevertheless of interest in its own right. The chosen 
problem is contaminant dispersion in a vertically well-mixed estuary of parabolic 
cross-section. 
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For unstratified water less than 20 m deep, vertical mixing takes place more rapidly 
than the tidal oscillations. I n  such shallow water the dominant long-term dispersion 
mechanism is associated with the lateral shear (Fischer 1972). Thus in applying the 
above analysis we can neglect the longitudinal turbulence contributions Kll ,  K+ and 
K-, and we can ignore any vertical concentration gradients. The water depth h(y) 
enters the equation because it relates to  the area over which lateral diffusion can take 
place. For example, the vertically integrated version of the equations (3.5) for the 
centroid displacement function g+(y, t )  is 

with (8.lb) 

(8.1 c)  0 = s = J y E  
and + 

hdy . 

Here 11.. .[I indicates a vertical-average value, and yR and yL are the positions of the 
right and left banks of the estuary. I n  regarding the estuary geometry as being 
independent of x, i t  is implicit that the tidal excursions are short compared with the 
estuary length. 

With an eye towards algebraic simplicity, we follow Fischer (1972) and Smith 
(1983) by choosing the following flow and topography models: 

Thus the local velocity and the transverse diffusivity are proportional to  the local 
water depth, and the depth profile is parabolic. The empirical constant k2 relating 
the turbulence to  the bulk flow U is about 0.02. 

The algebraic simplicity of the model (8.2) is revealed when we seek the solution 
of (8.1 ) for g+. Just  a single polynomial eigenmode is involved : 

( 8 . 3 ~ )  

where the centroid-displacement factor F+ satisfies the linear first-order differential 
equation 

F+ = Z(t). 
dF+ 10k2HlEl 

B2 
-+ 
dt 

(8.3b) 

At first sight it might appear that  the time dependence of x (i.e. the lUl coefficient) 
complicates the solution of (8.3b). However, following Smith (1982, equation (3.5)), 
we can introduce an  effective time coordinate 

i rt 

This transforms (8.3 b) to  the constant-coefficient form 

( 8 . 5 ~ )  



A dischawe in an oscillatoru Row 489 

Time = \ 1  2T 

FIGURE 1.  Centroid-displacement factors F+ for a sinusoida. JW in a shallow estuary 0, parabolic 
cross-section. The two values A = t and 6 of the non-dimensional mixing rate are representative 
of wide and of narrow estuaries respectively. 

with (8.5b) 

where T, is the timescale for mixing across the estuary. Hence the realism of time- 
dependent x is achieved without the expected cost of mathematical complications. 

In shallow estuaries the velocity profile can be markedly non-sinusoidal (Kreiss 
1957). However, if the tide dominates the mean flow, then the volume fluxes 
associated with the ebb and flood are equal and opposite. Thus, with respect to T there 
are equal spans of positive and negative U: 

sgn(2) = ( - l ) n  for nT < T < ( n + l ) T ,  (8.6) 

where 2T is the wave period. The corresponding solution for the centroid-displacement 
factor is 

with 

F+ = (lUl) - 2exp(-A5) 
T-{ h 1 

( 8 . 7 ~ )  

(8.7 b,  c )  

The use of T rather than x / w  avoids a profusion of n-factors in the subsequent 
formulae. 

The parameter h is a measure of the diffusive response rate in a flow period. For 
example, with T = 2.1 x lo4 a, H = 10 m, ( 121) = 0.5 m s-l, 

We find below that the transition of behaviour between rapid and slow diffusive 
response occurs for A - 3. Thus the dividing line between narrow and wide estuaries 
can be taken to be B - 80 m. 
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-0.03(liil)* T 

FIQURE 2. Comparison between the conventional D (-) and Yasuda's (1982) alternative 
definition b (- - - -) of the shear-dispersion coefficient for a shallow estuary of parabolic crow- 
section with E sinusoidal flow. 

Figure 1 shows the centroid displacement F+(.t) for the particular case of a sinusoidal 
flow, i.e. 

- 7 r -  xt 1 
u = -(lul> sin-, E = -(l-cosZ). 

2 T 2 T 

For large A (narrow estuaries) F+ is approximately a square wave with only a small 
time lag behind the changing direction of the bulk flow E(t) .  In contrast, for small 
A (wide estuaries) F+ is almost exactly out of phase with the current. 

The conventional definition (5.1) of the shear-dispersion coefficient is given by 

(8.10) 

This is shown in figure 2 for the special case of sinusoidal flow. In keeping with the 
work of Chatwin (1975), we h d  that even for fairly large values of A there can be 
a substantial timespan after flow reversal in which D is negative. The alternative 
definition (5.4) yields instead the strictly positive expression 

5 k H  - lU' { 1 - 2ex??(-A6)}2 +exp ( . (8.11) 
14A 

fi = Ka8(Vg+)' = - -F"+lul = 
7 B2 

Figure 2 reveals that for small A (i.e. when the estuary is wide) there is a considerable 
difference between D and B. 

The tidal-average values of D and fi are the same, and do not depend upon the 
detailed velocity profile E( t )  : 

( 8 . 1 2 ~ )  
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0.01 (l27l)'T 1 
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FIQURE 3. The tidally averaged dispersion coefficient for a parabolic estuary as a function of the 
mixing efficiency. The dotted curves give the wide- and narrow-estuary asymptotes. 

(see figure 3). We remark that for the particular specification (8.8) the peak value 
of (0) is 50 m2 s-l at B = 81 m. The asymptotic forms for small and for large A are 

(8.12b,c) 

As was commented upon earlier, the transition of behaviour occurs for A - 3. 

counterpart of ( 8 . 3 ~ )  is 
For the influence function g- associated with the discharge conditions, the 

g- = A [ 1 -5($)2] F-(t) .  
4 

( 8 . 1 3 ~ )  

Again, the use of the effective time coordinate T leads to a constant-coefficient 
equation : 

In  the tidally dominated case the solution is 

(8 .13~)  

For the particular case of sinusoidal flow, the solution for F corresponds to viewing 
figure 1 from the top of the page. 

The counterpart of equation (8.10) for D is 

(8.14) 
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Mixing rate A 

FIGURE 4. The optimal timing for uniform (-) and for point discharges 
(- - - -) in a shallow parabolic estuary with a sinusoidal flow. 

For a sinusoidal flow lUl is symmetric about t = 0. Thus we can infer that the graph 
of ug_ is the reflection about t = 0 of the D-profile shown in figure 2. Since the optimal 
timing (6.5) for a uniform discharge is associated with a rising value of Ug_, we deduce 
from figure 2 that the timing is soon after flow reversal. Using the results (8.12) and 
(8.14) in (6.5), we find that the optimal timing for a uniform discharge is when 

In the limits of strong and of weak mixing this becomes 

( 8 . 1 5 ~ )  

(8.15b,c) 

Thus, as was the case for K~~ independent of t (Smith 1983, equation (6.6)), the optimal 
timing is earlier when the estuary is wider. Figure 4 gives the timing for uniform 
discharges in a sinusoidal flow. 

For point discharges the analysis of $7 requires us to  consider the quantity d- and 
its various averages: 

(8.16~) 

(8.16d) 
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Conveniently, the forcing terms d--a- and (d-)-@-) in (7.6) and (7.7) have the 
same y-dependence. After a straightforward calculation, we find that in both the 
limits of strong and of weak mixing the averaged excess variance (w) has the shape 

constant-8 - +5 - M ("R)' (8.17) 

with a maximum value along 

(8.18) 

I n  the strong-mixing limit (7.5) yields the mme timing as (8.15b). Along the optimal 
line the small-A limit of (7.9) is 

- = ($ = 0.894. 
B 

i.e. 

For a sinusoidal flow the appropriate root is at 

5, = to/T = 0.68, 

( 8 . 1 9 ~ )  

(8.19 b) 

(8.20) 

i.e. displaced back to before flow reversal. We remark that the dip in value of n (and 
hence of d- )  near flow reversal gives rise to  a small local maximum of (W> a t  
6, = 0.036. 

The vertically integrated version of ( 4 . 3 ~ )  is 

ha,qY)-ay(h 11K22II a&') = h[(Ilull-49+-(II~II -U)g+l, ( 8 . 2 1 ~ )  

with h I I K ~ ~ I I  = 0 on Y = YR, YL, (8.21 b) 

(8.21 c) and 

For the particular flow and topography model (8.2) the solution for 9:) involves two 
polynomial eigenmodes : 

hgp) dy = 0. c: 

with (8.223) 

(8 .22~)  

I n  the tidally dominated case we can again use the effective time coordinate ( 8 . 4 ~ )  
to  derive explicit solutions for the modal amplitudes Fy) and EY) : 

( 8 . 2 3 ~ )  

with 

(8.233) 

(8 .23~)  
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FIQURE 5. The best discharge site in a shallow parabolic estuary with a sinusoidal flow. 

I- - - - - _ _ -  I-------- 

- B  

0 T 
Time 

FIGURE 6. Contours of the contribution (8.24) to the excess variance &ae associated with the precise 
timing and siting of a contaminant release. The non-dimensional mixing rates are (a) A = 3, (a) 3 
and (c) 6. 
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FIQURE 6 ( b )  and (c). For description see opposite. 
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0 T 2T 3T 4T 

Lapse time f - f, 

0 T 
Lapse time I - I ,  

FIQURE 7 (a) and ( b ) .  For description see opposite. 

2T 

The corresponding solution for the influence function g?) simply involves the 
replacement of f ;  by 1-6. 

For a point discharge we can split the formula (6.2) into symmetric source and 
observation terms. The source contribution to 6a2 is 

2jt; [ug_-(~)1d~'+2g(2)(y,,z,,t,)-g-(y,,z,,t,)2-~lg,lt*, (8.24) 

where we have neglected the longitudinal turbulence contributions KI1 and K - .  To 
apply this formula we need to  supplement the above results with the further result 

(8.25) 
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0.02 (IPI)Z T 

/ 

T 
Lapse time r - r, 

FIUURE 7. Variance at the side of the estuary as a function of the lapse time 6t = t - to for the best 
and worst discharge conditions. The non-dimensional mixing rates are (a) h = #, (a) 3 and (c) 6. 
The asymptotic results are deemed to be unreliable in the dotted sections. 

Figures 4 and 5 give numerical results for the optimal timing and position of point 
discharges in a sinusoidal flow. The dip in x near flow reversal leads to a double-peaked 
behaviour for &a* when A is small. The discontinuity at A = 1.65 in figures 4 and 5 
corresponds to the changeover in dominance between the peaks either side of flow 
reversal. 

To illustrate the behaviour of &a2, figures 6(a-c) give the source contribution (8.24) 
for sinusoidal flows with 

t ,  = 0, A = t ,  3,6. (8.26) 

As predicted in $7, there is a changeover from predominantly spatial to temporal 
behaviour as the mixing efficiency increases. There is also a marked reduction in the 
magnitude of the excess variance as A increases. 

The corresponding dependence of &a2 upon the observation conditions (y, z ,  t) can 
be obtained simply by replacing g- and 9'2) by g+ and gy) in (8.24). The symmetry 
with respect to time of the sinusoidal velocity field allows us to use the same 
figures 5 and 6(u-c) with the time axis reversed. The total excess variance tic2 is 
then the sum of the source and observation contributions. 

To illustrate the magnitude of the source effect, figures 7 (a-c) show the variance 
at the side of wide (A = t ) ,  intermediate (A = 3) and narrow (A = 6) estuaries for the 
best and worst discharge conditions. The asymptotic formulae for a2 and &a2 are only 
valid after cross-sectional mixing has occurred. Thus the results are presented over 
time ranges of six times the e-folding time T,, with the unreliable initial sections shown 
as dotted curves. In  all three cases the timing and cross-stream position of the 
discharge has a substantial influence upon the spread, and hence upon the concent- 
ration, of the contaminant. 

For other observation positions the results would be less oscillatory, and might not 
exhibit the contractions after flow reversal (Smith 1983). However, the division of 



498 R. Smith 

the excess variance 6a2 into source and observation terms means that the separation 
between the best and worst curves would be unchanged. Indeed, for observations 
along the centreline of the estuary the total variance would be lower (see figures ~ u - c ) ,  
and the relative impact of the discharge conditions would be even more dramatic. 

The financial support of the Royal Society is gratefully acknowledged. 

Appendix. Upstream and downstream diffusion equations 

(see (2 .3b) )  
In  the above analysis we repeatedly require the evaluation of integrals of the form 

t -  
( T - F )  b dt’, (A 1) 

Jt . 
where b(y ,  z, t) satisfies a forced diffusion equation (see (2 .4a-c) )  

a tb-V. (x .Vb)  = s-Z, (A 2a) 

with n * x * V b  = 0 on aA, (A 2b)  

and b = 0. ( A  2c)  
- 

Hence b depends upon the value of s at earlier times. In the particular case b = b(O) 
the forcing is absent, i.e. s = 0. 

From the weight factor r ( y ,  z, t)  in the integral ( A  l ) ,  we define an auxiliary function 
a ( y ,  z, t ) ,  which depends upon the value of T at later times: 

-ata-vqx-va) = +-r, (A 3 a )  

with n-x-Va  = 0 on aA, ( A  3 b )  

(A 3 4  
- 

and a = 0. 

If we multiply ( A  2a) by a ( y ,  z, t ) ,  subtract ( 3 a )  multiplied by b(y,  z, t ) ,  and then 
integrate across the flow, we arrive at 

~~ 

at(a) = ( s -S)a- (T-F)b .  (A 4 )  

Performing an integration with respect to time, we achieve our desired result 
rt r t  

From (A 2a) we see that s(y, z, t )  is two spatial derivatives simpler than the function 
b(y,  z, t ) .  Indeed, in the particular case b = b(O) we have the ultimate simplification 
s = 0. In general, the component terms of 8 themselves satisfy a forced diffusion 
equation of the form ( A 2 a ) .  Thus, after reorganization of the right-hand-side 
integrals to the form (A i ) ,  the process can be repeated until finally an explicit 
formula is obtained. 

The auxiliary function a(y, z, t )  represents the long-term influence of the discharge 
conditions. Hence it is appropriate that a ( y ,  z, t)  should satisfy a time-reversed 
diffusion equation, and only depends upon what happens after the discharge takes 
place. 
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